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a b s t r a c t

Heparin is a naturally produced, heterogeneous compound consisting of variably sulfated and acetylated
repeating disaccharide units. The structural complexity of heparin complicates efforts to assess the purity
of the compound, especially when differentiating between similar glycosaminoglycans. Recently, heparin
sodium contaminated with oversulfated chondroitin sulfate A (OSCS) has been associated with a rapid
and acute onset of an anaphylactic reaction. In addition, naturally occurring dermatan sulfate (DS) was
found to be present in these and other heparin samples as an impurity due to incomplete purification.
The present study was undertaken to determine whether chemometric analysis of these NMR spectral
data would be useful for discrimination between USP-grade samples of heparin sodium API and those
deemed unacceptable based on their levels of DS, OSCS, or both. Several multivariate chemometric meth-
ods for clustering and classification were evaluated; specifically, principal components analysis (PCA),
partial least squares discriminant analysis (PLS-DA), linear discriminant analysis (LDA), and the k-nearest-
neighbor (kNN) method. Data dimension reduction and variable selection techniques, implemented to
avoid over-fitting the training set data, markedly improved the performance of the classification models.

Under optimal conditions, a perfect classification (100% success rate) was attained on external test sets
for the Heparin vs OSCS model. The predictive rates for the Heparin vs DS, Heparin vs [DS + OSCS], and
Heparin vs DS vs OSCS models were 89%, 93%, and 90%, respectively. In most cases, misclassifications can
be ascribed to the similarity in NMR chemical shifts of heparin and DS. Among the chemometric methods
evaluated in this study, we found that the LDA models were superior to the PLS-DA and kNN models for
classification. Taken together, the present results demonstrate the utility of chemometric methods when

ith 1
applied in combination w

. Introduction

Starting in November 2007, hundreds of cases of adverse reac-

ions to heparin, such as hypotension, severe allergic symptoms,
nd even death, were reported to the US Food and Drug Admin-
stration (FDA) [1]. Prompted by these adverse events, biological
nd analytical methods were developed to identify contami-
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nants and impurities in heparin [2–6]. Oversulfated chondroitin
sulfate (OSCS) was identified as a contaminant associated with
these adverse clinical effects [7]. Heparin is a polydisperse linear
polysaccharide consisting primarily of alternating glucosamine and
hexuronic acid with various sulfonated and acetylated substitu-
tions [8]. Like heparin, OSCS is a polyanionic glycosaminoglycan
but differs in structure. In OSCS, the 1,3 linked disaccharide units
are sulfated at the 4-O and 6-O positions of the galactosamine as
well as at the 2-O and 3-O positions of the glucuronic acid. OSCS

is not known to be a natural product; it can be synthesized by
chemically modifying chondroitin sulfate A (CSA), which normally
contains one sulfate group per disaccharide unit [9]. In standard
drug potency assays, the OSCS molecule can partially mimic the
anti-coagulation activity of heparin [10]. In addition, a naturally

dx.doi.org/10.1016/j.jpba.2010.12.008
http://www.sciencedirect.com/science/journal/07317085
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ccurring polysaccharide, dermatan sulfate (DS, formerly named
hondroitin sulfate B or CSB), can be present in heparin products
ue to incomplete purification [11,12].

To ensure the safety and quality of heparin, spectroscopy
nd chromatography methods have been added to the United
tates Pharmacopeia (USP) monograph for heparin sodium active
harmaceutical ingredient (API) to detect and screen for impuri-
ies and contaminants [13]. Nuclear magnetic resonance (NMR)
pectroscopy is now used to identify the presence or absence of con-
aminants [7,9,11,14], while capillary electrophoresis (CE) [6,12,15]
nd strong anion exchange-HPLC (SAX-HPLC) [5,16,17] have been
sed to measure the relative amounts of heparin, DS and OSCS.
AX-HPLC and CE assays on heparin samples from 2008 found up
o 27% (w/w%) OSCS and 19% DS. However, of these three analyti-
al techniques, the complex pattern of overlapping 1H NMR signals
ound in the heparin spectra was judged most effective to assess
tructural information.

Because unique signals associated with OSCS or DS in contami-
ated or impure heparin were observed in the NMR spectra, the
resent study was undertaken to evaluate the ability of several
hemometric approaches, including principal components anal-
sis (PCA), partial least squares discriminant analysis (PLS-DA),
inear discriminant analysis (LDA), and the k-nearest neighbor
kNN) method to distinguish between pure, impure or contam-
nated samples of heparin based on analysis of their 1H NMR
pectral data. To maintain consistency in data handling and to
void bias, blinded 1H NMR data from heparin samples ana-
yzed by FDA personnel was provided for subsequent chemometric
nalysis. The purpose of the study was to assess the ability
f these chemometric approaches to differentiate the samples
nto distinct groups corresponding to pure, impure, or contami-
ated heparin based solely on analysis of their NMR spectral data
nd, more generally, to characterize analytes for quality control
r purity assessment. Results from the present study demon-
trate success rates of 90–100% classification using chemometric
pproaches, with LDA and PLS-DA providing the best performance
verall.

. Materials and methods

.1. NMR spectroscopy measurement

All samples were analyzed using a Varian Inova 500 instrument
t the Washington University (St. Louis, MO) Chemistry Depart-
ent NMR Facility operating at 499.893 MHz for 1H-nuclei. Details

n the NMR measurements of the heparin samples can be found
lsewhere [18].

.2. HPLC analysis of heparin

SAX-HPLC was used to measure the weight percent of DS or OSCS
ontent in heparin as described in previous work [5,13]. Briefly, an
gilent 1100 HPLC system with a Dionex AS-11HC strong anion
xchange column was used to separate DS, heparin and OSCS. The
eak areas of DS (eluting at 16 min) or OSCS (eluting at 24 min)
ere compared to the areas obtained from the response of DS or
SCS standards to quantify the weight percent of the impurity and
ontaminant in the presence of heparin. In addition, the heparin
amples were analyzed using HPLC with a pulsed amperometric

etector as described in the USP monograph [19] to determine the
eight percent galactosamine (%Gal) content. This assay measures

otal galactosamine content and does not discriminate between
alactosamine containing impurities or contaminants (e.g. DS, CSA
r OSCS).
omedical Analysis 54 (2011) 1020–1029 1021

2.3. Data processing

1H NMR spectra for over 170 heparin sodium API samples
from different manufacturers with varying levels of OSCS and
DS were processed using the software MestRe-C (Version 5.3.0).
Phase correction was achieved through automatic zero and first-
order correction procedures. All samples were made ca. 3 mM in
4,4-dimethyl-4-silapentane-1-sulfonic (DSS) acid as an internal
reference for chemical shift.

For the chemometric analysis, each 1H NMR spectrum was
automatically data-reduced and converted into 125 variables by
dividing the 1.95–5.70 ppm region into sequential windows of
width 0.03 ppm. After exclusion of the windows containing sig-
nals due to residual processing solvents and reagents, a reduced
data set of 74 variables was obtained for subsequent data analy-
sis. Prior to chemometric analysis, the spectra were converted into
ASCII files where the data were represented in n × m-dimensional
space (n and m equal to the number of samples and the number of
variables, respectively), and the resulting data matrix was imported
into Microsoft Excel 2003. Following standard practice in multivari-
ate chemometric analysis, the total data set was divided into two
subsets: a training set for building and calibrating the classification
models; and a test set for validating the model’s predictive ability.

Although the current USP monograph specifies the weight
percent of galactosamine (%Gal) may not exceed 1% in total hex-
osamine content, the pending Stage 3 revision of the heparin
sodium monograph requested by the FDA specifies 1.0%Gal. There-
fore, the 1.0%Gal specification was adopted in the present study to
delineate heparin samples that do or do not pass this criterion. DS
is the primary chondroitin impurity observed in heparin APIs and,
for the purpose of this study, the %Gal is presumed equal to %DS for
samples not containing OSCS. The samples were divided into three
groups: (a) Heparin: DS ≤ 1.0% and OSCS = 0%; (b) DS: DS > 1.0% and
OSCS = 0%; and (c) OSCS: OSCS > 0% with any content of DS. The total
data set comprised 178 samples, consisting of 82 Heparin, 50 DS, and
46 OSCS samples.

2.4. Software

All data processing, multivariate analysis, and model building
were implemented using the R statistical analysis software for
Windows (Version 2.8.1) [20]. The packages stats, caret, MASS, as
well as class and chemometrics in R were used to perform principal
components analysis, partial least squares discriminant analy-
sis, linear discriminant analysis, and k-nearest neighbors analysis,
respectively [21,22]. The variable selection through stepwise linear
discriminant analysis (SLDA) was conducted using the chemomet-
ric software V-Parvus 2007 [23].

3. Results and discussion

3.1. Proton NMR spectra

Representative 1H NMR spectra of the three classes of hep-
arin samples (i.e., Heparin, DS and OSCS) are illustrated in Fig. 1
for the range 1.95–6.0 ppm. Each spectrum reveals distinctive fea-
tures, and their respective patterns are easily distinguished from
one other in the range from 1.95 to 2.20 ppm. The basic repeat-
ing disaccharide unit for heparin is 2-O-sulfated uronic acid and
6-O-sulfated N-sulfated glucosamine, whereas the correspond-

ing repeating unit for DS or OSCS is iduronic or glucuronic acid,
respectively, and galactosamine. About every fifth amino group
is acetylated for heparin, but almost all of the amino groups
are acetylated in DS and OSCS [7,11]. A single peak appears at
2.05 ppm for the N-acetyl protons of heparin, and the methyl sig-
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ig. 1. 1H NMR spectra of pure heparin (brown, 0.14% DS and 0% OSCS), heparin
ontaminant (blue, 2.71% DS and 14.0% OSCS). (a) In the 2.20–1.95 ppm region; (b)
egend, the reader is referred to the web version of the article.)

al shifts about 0.03 ppm downfield in DS samples. Thus, a small
eak, corresponding to the N-acetyl protons of DS, can be found
ear 2.08 ppm. Likewise, OSCS exhibits a characteristic peak near
.15 ppm. Other less obvious differences in these three classes
f heparin samples occur in the remaining pattern of intensities
t the chemical shifts of the heparin protons in the NMR spec-
ra. These patterns of intensities are valuable for characterizing
nd quantifying analytes for quality control and purity assessment
24–26], and amenable to analysis using chemometric approaches.
rior to chemometric analysis, the 1H NMR spectra of the hep-
rin samples were preprocessed into a discrete set of variables that
erved as the input to the pattern recognition tools for subsequent
nalysis of the pure, DS-impure, and OSCS-contaminated heparin
amples.
.2. Pattern recognition

For the classification studies, the 178 heparin samples were
ivided into three groups, viz., Heparin: pure heparin with DS ≤ 1.0%
nd OSCS = 0%; DS: impure heparin with DS > 1.0% and OSCS = 0%;
ining DS impurity (green, 4.12% DS and 0% OSCS), and heparin containing OSCS
6.00–3.00 ppm region. (For interpretation of the references to color in this figure

and OSCS: contaminated heparin with OSCS > 0% and with any con-
tent of DS. In these samples, the DS content varied from 0% to19%
of the disaccharide mixture, and the OSCS content varied from 0%
to 27%. The data set of 178 heparin samples was split (2:1) into
118 samples for training (54 Heparin, 33 DS, and 31 OSCS) and 60
samples for external validation and testing (28 Heparin, 17 DS, and
15 OSCS). The 1H NMR spectral data for the data set were repre-
sented as a two-dimensional array with each row corresponding to
a sample and the columns to the 74 variables.

3.2.1. Principal components analysis (PCA)
PCA is a well-known technique for reducing the dimensionality

and simplifying the visualization of complex multivariate data sets
[26,27]. PCA transforms the original variables into a smaller num-
ber of mutually orthogonal variables called principal components

(PCs). The first component (PC1) explains the maximum amount
of variance in the data, followed by PC2, next PC3, and so on. PCA
is an unsupervised method, in that no a priori knowledge relating
to class affiliation is required [28]. PCA has been widely applied in
conjunction with discriminant analysis techniques to handle clas-



Q. Zang et al. / Journal of Pharmaceutical and Biomedical Analysis 54 (2011) 1020–1029 1023

F parin
H

s
t

o
a
r
s
a

ig. 2. Scores plots. (a) PCA, Heparin vs DS; (b) PLS-DA, Heparin vs DS; (c) PCA, He
eparin vs DS vs OSCS.

ification problems. In addition, the PC scores can be used as inputs
o multivariate analyses.

The PCA score plots mapped in two dimensions (PC1 vs PC2),

btained from analysis of the 1H NMR spectra for a subset of hep-
rin samples, are shown in Fig. 2a, c and e. Each point on the plots
epresents one spectrum of an individual sample, and points of the
ame color indicate samples of the same origin, such as pure hep-
rin (Heparin), heparin with the impurity DS (DS), or heparin with
vs OSCS; (d) PLS-DA, Heparin vs OSCS; (e) PCA, Heparin vs DS vs OSCS; (f) PLS-DA,

the contaminant OSCS (OSCS). The spectra with similar character-
istics form a cluster and the variations along the PC axes maximize
the differences between the spectra.
The Heparin and DS samples were only partially separated into
distinct domains using two-dimensional PCA (Fig. 2a). This partial
separation was anticipated, in view of the similarities in the NMR
spectra of heparin and DS. Furthermore, the intermingled points
for the DS and Heparin samples seen in Fig. 2a correspond to cases
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ig. 3. Misclassification rate as a function of the number of PLS components for t
eparin vs DS vs OSCS.

n which the DS content is near the 1.0% boundary for impurity
cceptance.

With respect to discriminating the Heparin and OSCS samples,
he PC1 vs PC2 scores plot shows clean separation into two distinct
lusters (Fig. 2c). The cluster is tighter for the Heparin group than
or the OSCS group, consistent with the smaller variability of DS
ontent in the former relative to OSCS content in the latter.

Discrimination of the Heparin, DS and OSCS samples is appar-
nt in the PC1 vs PC2 scores plot (Fig. 2e). PC1 plays a dominant
ole in separating the three types of samples into distinct clusters,
lbeit with some sample overlap. The contribution of PC2 is more
n capturing within-sample variability in each case. The extensive
pread of the OSCS points in the plot reflects the great variability
n both OSCS and DS content in these samples. To achieve further
eparation and quantitatively classify these samples, supervised
nalysis of the pattern recognition (i.e., PLS-DA, LDA, and kNN) was
erformed.

.2.2. Partial least squares discriminant analysis (PLS-DA)
PLS-DA is a linear regression approach in which the multivariate

ariables from the observations are correlated with the class affil-

ation of each sample [21]. PLS-DA attempts to build models that
an maximize the separation among classes of objects. Since the
lass affiliation of the objects is included in the regression calcula-
ion, PLS-DA is a supervised approach. The regression of the latent
ariables (T) against a “dummy matrix” (Y) describes the variation
-DA model. (a) Heparin vs DS; (b) Heparin vs OSCS; (c) Heparin vs [DS + OSCS]; (d)

according to class affiliation, where Y contains the values of 1 and 0
for each class and comprises as many columns as there are classes.
For the training set, an observation is assigned the value of 1 for
its class affiliation and 0 for the other classes. The output of PLS-
DA regression is a matrix which can be used to classify unknown
samples. The prediction result from the PLS-DA model is a numeric
value. If the value is close to 1, then the test sample is assigned
to the modeled class; if the value is close to 0, then the object is
unassigned or assigned to another class.

To optimize separation between pure, impure and contami-
nated heparin samples, and to build predictive models for class
identification, PLS-DA was performed using the classes of Heparin,
DS or OSCS as the y variables. The two-dimensional scores plots of
the first and second latent variables (similar to PCs) are displayed
in Fig. 2b, d and f. With PLS-DA, nearly all samples were in dis-
tinct classes, and clear discrimination of the Heparin samples from
the DS and OSCS samples was observed. Here, the Heparin sam-
ples appeared in a more compact grouping, while the contaminated
(OSCS) samples were distributed broadly in the scores plot similar
to that in the PCA model. PLS-DA correctly classified these samples
into three distinct clusters, as shown in Fig. 2f. This supervised clus-

tering approach gave much improved separation compared with
the PCA model, and excellent class discrimination was achieved
between the three types of heparin samples.

After PLS data compression, PLS-DA classification models were
built and tested while increasing the number of PLS components
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Table 1
Number and type of misclassifications (errors) by PLS-DA classification model for test sets.

Components 1 2 4 6 8 10 12 14 16 18 20

Model
Heparin vs DS

Heparin errors/28 samples 4 2 1 1 2 4 4 5 5 5 6
DS errors/17 samples 5 5 6 6 6 6 7 7 7 8 8

Heparin vs OSCS
Heparin errors/28 samples 0 0 0 0 0 0 0 1 1 1 1
OSCS errors/15 samples 3 2 2 1 1 0 0 0 1 1 1

Heparin vs [DS + OSCS]
Heparin errors/28 samples 3 4 2 1 2 2 3 3 4 5 8
[DS + OSCS] errors/32 samples 9 6 7 6 5 5 5 5 5 6 8
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Heparin vs DS vs OSCS
Heparin errors/28 samples 4 3 1 1
DS errors/17 samples 7 7 7 8
OSCS errors/15 samples 6 6 5 4

tarting at 1. The number of correct classifications in both the train-
ng and test sets was taken as a measure of performance. Fig. 3
llustrates the evolution of the misclassification rates in the train-
ng and test sets as a function of the number of PLS components
n the model. As expected for the training set, the number of cor-
ect classifications increased with the number of dimensions (PCs).
or any model, the misclassification rates were small even with
ew PLS components and reached a plateau at which all the rates
pproached zero after 20–40 components.

Leave-one-out cross-validation (LOO-CV) was employed to
elect the model with the optimal number of PLS components that
inimize the misclassification rate. For LOO-CV, the data set was

plit into s segments: the training was performed on the (s−1)
locks, and the testing was conducted on the objects belonging to
he sth subset. To predict all the objects, this process was repeated
times through block permutation [29]. Classification rates of 85%,
7% and 82% were obtained for Heparin vs DS, Heparin vs OSCS,
nd Heparin vs [DS + OSCS] models, respectively. In addition, a 75%
lassification rate was attained by the threefold Heparin vs DS vs
SCS model. The majority of misclassifications between Heparin
nd DS involved cases where the DS content was close to the 1.0%
S boundary between the two classes, as measured by SAX-HPLC
easurements.
The true test of the model depends on its performance when

pplied to an external test set of samples that were not employed
or building the model. Consequently, the model was validated
sing an external test set of 60 samples. The results, plotted in
ig. 3, point to the same conclusions as described above for the
OO-CV. By increasing the number of PLS components incremen-
ally, it was observed that the classification rates were optimal for
he Heparin vs DS (84%), Heparin vs OSCS (100%), and Heparin vs
DS + OSCS] (88%) models when the number of PCs = 2–6, 10–12,
nd 6–10, respectively. Even for the threefold Heparin vs DS vs OSCS
odel, the classification performance was 85% using 16 PCs.
The results for the corresponding test sets are presented in

able 1. For the Heparin vs DS model using 4–6 PCs, misclassifi-
ation of Heparin as DS occurred only once and DS as Heparin six
imes. In nearly all of these cases the DS content was 1.06–1.20%,
.e., near the 1.0% boundary specifying the two classes.

For the Heparin vs OSCS model using 1–12 PCs, misclassification
f Heparin as OSCS was zero and OSCS for Heparin varied from 0 to
. The number of misclassifications was zero (100% success rate)
or the Heparin vs OSCS model using 10–12 PCs.
For the Heparin vs [DS + OSCS] model using 8–10 PCs, only two
eparin samples and five samples in the [DS + OSCS] group were
isclassified. As noted for the Heparin vs DS model, in most cases

hese misclassifications occurred when the DS content was near
he 1.0% DS boundary defining the Heparin and DS classes. The same
1 2 3 3 3 3 4
8 8 7 7 5 7 8
2 1 1 1 1 1 2

interpretation applies to the threefold Heparin vs DS vs OSCS model,
where most of the misclassifications involved samples near the 1.0%
DS borderline between Heparin and DS. Notably, the discrimination
between the Heparin and OSCS samples was 100%.

3.2.3. Linear discriminant analysis (LDA)
As an alternative approach, LDA was employed to classify the

Heparin, DS and OSCS samples based on predefined classes. LDA is a
well established method for supervised pattern recognition as well
as dimension reduction for variable selection [21]. In LDA, a linear
function of the dataset is sought so that the ratio of between-class
variance is maximized and the ratio of within-class variance is min-
imized, and finally the optimal separation among the given classes
is achieved. Like PLS-DA, the ultimate aim of LDA is to qualitatively
predict the group affiliation for unknown samples. Discrimination
of the classes is performed by calculating the Mahalanobis dis-
tance of a sample from the center of gravity of each specified class,
then assigning the sample to the class associated with the small-
est distance. A test sample was correctly classified if it was located
nearest to the center of gravity of its actual class. Otherwise, the
sample would be (incorrectly) classified to another class for which
the Mahalanobis distance was the smallest.

In order to select a subset of the original variables that
affords the maximum improvement of the discriminating abil-
ity between classes, stepwise linear discriminant analysis (SLDA)
was performed before LDA analysis. SLDA employs an aggregative
procedure, which starts with no variables in the model and adds
the variables with the greatest discriminating ability in successive
steps [30]. In SLDA, Wilks’ lambda is employed as a selection crite-
rion to determine the variables included in the procedure. Wilks’
lambda is defined as the ratio of the intra-class covariance to the
total covariance; hence, its value varies between 0 and 1. A value
close to 0 denotes that the classes are well separated, while a value
close to 1 denotes that the classes are poorly separated.

As the first step, the variable that best discriminates the groups
is selected for the model. Each successive step involves evaluation
of all remaining variables in order to select the one that yields the
minimum intra-class covariance, i.e., the smallest Wilks’ lambda,
which implies that the within-class sum of squares is minimized
while the inter-class sum of squares is maximized. The selection
procedure stops when all variables have been evaluated. Prelimi-
nary variable reduction using SLDA led to the selection of a series
of variables from 1 to 20 (Table 2).
After variable selection by dimension reduction, LDA analysis
was conducted using the squared Mahalanobis distance from the
centers of gravity of each group for assigning the class affiliation of
each sample. The results show that class discrimination improved
markedly after variable selection (Table 3). For the training set, the
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Table 2
The variables (ppm) selected from stepwise linear discriminant analysis (SLDA) for
various models.

Order Heparin
vs DS

Heparin vs
OSCS

Heparin vs
[DS + OSCS]

Heparin vs DS
vs OSCS

1 2.07 2.16 2.07 2.10
2 3.61 2.07 4.49 3.86
3 5.34 4.49 2.16 3.52
4 2.16 4.16 4.16 4.49
5 2.13 4.04 4.46 5.16
6 4.61 3.55 5.16 3.58
7 2.10 4.52 5.10 2.16
8 3.95 3.64 5.61 3.95
9 5.67 5.61 4.28 4.46

10 4.04 5.67 3.55 5.00
11 5.43 4.37 4.94 4.43
12 3.70 5.25 5.49 3.70
13 4.46 3.73 4.97 5.13
14 3.76 5.03 4.61 5.03
15 3.73 2.13 4.22 5.46
16 5.40 5.49 5.19 4.64
17 3.67 3.67 5.43 4.13
18 4.01 4.10 4.34 4.16

s
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of k that are too small (leading to underfitting) or too large (leading
to overfitting) can lead to poor classification of new objects. By test-

T
P

19 5.19 5.28 5.58 4.28
20 5.31 5.19 5.25 4.22

uccess rates approached 100% with increasing the number of vari-
bles. The Heparin vs OSCS model required very few variables to
chieve 100% success rates due to the clear distinction in spectral
eatures between heparin and OSCS. Cross validation and exter-
al validation studies indicated that model performance reached a
aximum using an intermediate number of variables. LDA models

ypically include a set of tunable parameters, the number of which
ncreases with the number of variables. While even models with
omplex relationships in the sample can usually be fit quite well

y using enough tunable parameters, this typically leads to much
igher error rates for the test set than for the training set as occurred

n the present instance.

able 3
erformance of LDA classification models under different variables selected from SLDA.

Number of variables 2 4 6

Heparin vs DS
Training set Errors/87 samples 14 12 10

Success rates (%) 84 86 89
CV set Errors/87 samples 15 13 12

Success rates (%) 83 85 86
Test set Errors/45 samples 7 6 5

Success rates (%) 84 87 89

Heparin vs OSCS
Training set Errors/85 samples 6 4 4

Success rates (%) 93 95 95
CV set Errors/85 samples 6 5 4

Success rates (%) 93 94 95
Test set Errors/43 samples 2 1 1

Success rates (%) 95 98 98

Heparin vs [DS + OSCS]
Training set Errors/118 samples 17 15 14

Success rates (%) 86 87 88
CV set Errors/118 samples 19 18 18

Success rates (%) 84 85 85
Test set Errors/60 samples 7 6 5

Success rates (%) 88 90 92

Heparin vs DS vs OSCS
Training set Errors/118 samples 26 24 21

Success rates (%) 78 80 82
CV set Errors/118 samples 28 27 25

Success rates (%) 76 77 79
Test set Errors/60 samples 12 11 10

Success rates 80 82 83
iomedical Analysis 54 (2011) 1020–1029

The risks of over-fitting can be alleviated by selecting the opti-
mal number of variables, which was determined by the successful
rate of classifications using LOO-CV and validation with external
test sets. Optimal success rates, varying from 89% to 100%, for the
Heparin vs DS, Heparin vs OSCS, Heparin vs [DS + OSCS] models were
achieved using only 6–14 variables depending on the specific model
and testing procedure (Table 3). In the same way, the threefold Hep-
arin vs DS vs OSCS model achieved an optimal success rate of 90%
using 10–12 variables. Once again, the majority of misclassifica-
tions are attributed to Heparin and DS samples in which the DS
content was near the 1.0% boundary between the two classes.

With respect to classification of individual samples and overall
success rates, the performance of LDA was comparable to PLS-DA
for the Heparin vs OSCS model and superior to PLS-DA for other
three models. For the external test set under optimal conditions,
the success rates for the Heparin vs DS, Heparin vs [DS + OSCS], and
Heparin vs DS vs OSCS models were respectively 89%, 93%, and 90%
using LDA compared to 84%, 88% and 85% using PLS-DA.

3.2.4. k-Nearest-neighbor (kNN)
The kNN method calculates the distances between a new object

(a test data point) and all objects in the training set in p-dimensional
variable space [31–33]. Unlike PLS-DA and LDA, the kNN approach
avoids the need for model generation. Neighbor determination is
calculated by the Euclidean distance, and the nearest k objects are
used to estimate the class affiliation of the test object. By apply-
ing the majority rule, the new object is assigned to the class of the
majority of the k objects, i.e., the prediction is related to a majority
vote among the neighbors. To correctly assign the group affiliation
for a test data point, this technique requires tuning of the adjustable
parameter k (i.e., the optimal number of nearest neighbors). Values
ing a series of k values and assessing the prediction performance,
the optimal value of k corresponds to that giving lowest number of
misclassifications.

8 10 12 14 16 18 20

10 9 9 8 6 5 3
89 90 90 91 93 94 97
12 10 10 12 13 14 14
86 89 89 86 85 84 84

5 6 6 7 8 8 10
89 87 87 84 82 82 78

2 1 1 0 0 0 0
98 99 99 100 100 100 100

4 2 0 1 2 3 5
95 98 100 99 98 97 94

1 0 0 1 2 2 3
98 100 100 98 95 95 93

14 13 13 12 10 9 9
88 89 89 90 92 93 93
16 14 11 10 12 15 17
86 88 91 92 90 87 86

5 4 5 6 6 6 8
92 93 92 90 90 90 87

19 16 14 12 12 10 8
84 86 88 90 90 92 93
19 15 13 16 18 19 21
84 87 89 86 85 84 82

9 6 6 8 8 10 10
85 90 90 87 87 83 83
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Table 4
Performance of kNN classification models for the original data.

Model Heparin vs DS Heparin vs OSCS Heparin vs [DS + OSCS] Heparin vs DS vs OSCS

k = 3 Training set
Errors/samples 7/87 1/85 13/118 16/118
Success rate (%) 92 99 89 86

LOO-CV set
Errors/samples 16/87 4/85 25/118 32/118
Success rate (%) 82 95 79 73

Test set
Errors/samples 14/45 4/43 11/60 19/60
Success rate (%) 69 91 82 68

k = 5 Training set
Errors/samples 12/87 2/85 17/118 21/118
Success rate (%) 86 98 86 82

LOO-CV set
Errors/samples 17/87 5/85 25/118 30/118
Success rate (%) 81 94 79 75

Test set
Errors/samples 13/45 4/43 11/60 22/60
Success rate (%) 71 91 82 63

k = 7 Training set
Errors/samples 13/87 2/85 17/118 20/118
Success rate (%) 85 98 86 83

LOO-CV set
Errors/samples 14/87 5/85 27/118 33/118

f
a
C
o
e
H
w

T
P

Success rate (%) 84 94
Test set

Errors/samples 13/45 4/43
Success rate (%) 71 91

The kNN method was implemented to evaluate its performance
or classification. Various k values (3, 5 or 7) were tested using the
ll-variable data set, and the success rates for the training set, LOO-
V, and the test set are summarized in Table 4. Overall, the results

btained were inferior for kNN compared with LDA and PLS-DA. For
xample, the success rates for the Heparin vs DS, Heparin vs OSCS,
eparin vs [DS + OSCS], and Heparin vs DS vs OSCS models using k = 3
ere respectively 69%, 91%, 82% and 68% for the test set.

able 5
erformance of PCA-kNN classification models under different PCs.

PCs 5 10 15 2

Heparin vs DS (k = 2)
Training set Errors/87 samples 13 11 7

Success rates (%) 85 87 92 9
CV set Errors/87 samples 25 20 17 2

Success rates (%) 71 77 80 7
Test set Errors/45 samples 12 15 16 1

Success rates (%) 73 67 64 7

Heparin vs OSCS (k = 4)
Training set Errors/85 samples 6 3 5

Success rates (%) 93 96 94 9
CV set Errors/85 samples 10 13 11 1

Success rates (%) 88 85 87 8
Test set Errors/43 samples 37 38 40 3

Success rates (%) 86 88 93 9

Heparin vs [DS + OSCS] (k = 3)
Training set Errors/118 samples 17 10 13 1

Success rates (%) 86 92 89 8
CV set Errors/118 samples 23 30 26 3

Success rates (%) 81 75 78 7
Test set Errors/60 samples 13 13 12

Success rates (%) 78 78 80 8

Heparin vs DS vs OSCS (k = 3)
Training set Errors/118 samples 18 13 19 2

Success rates (%) 85 89 84 8
CV set Errors/118 samples 30 39 32 4

Success rates (%) 75 67 73 6
Test set Errors/60 samples 21 19 18 1

Success rates 65 68 70 7
77 72

13/60 21/60
78 65

To obtain better classification results, the PCA scores were
employed as inputs to build the kNN models. Various combina-
tions of PCs and k values were investigated, and the results are
summarized in Table 5. Unlike the PLS-DA and LDA models where

the misclassification rates for the training set decreased mono-
tonically to 0% as the number of PCs or variables increased, the
misclassification rates of the kNN models for the training set fluctu-
ated within a range of values. The optimal performance of the kNN

0 25 30 35 40 45 50 55 60

5 12 8 10 12 10 13 15 14
4 86 91 89 86 89 85 83 84
0 25 25 27 22 29 34 31 33
7 71 71 69 75 67 61 64 62
2 10 14 12 15 15 12 16 19
3 78 69 73 67 67 73 64 58

5 9 8 8 11 11 16 13 19
4 89 91 91 87 87 81 85 78
0 14 18 19 25 22 24 25 26
8 84 79 78 71 74 72 71 69
9 39 37 30 33 33 31 30 33
1 91 86 70 77 77 72 70 77

7 19 11 16 14 18 17 19 25
6 84 91 86 88 85 86 84 79
4 33 39 31 28 34 36 34 43
1 72 67 74 76 71 69 71 64
9 17 15 17 19 23 22 22 21
5 72 75 72 68 62 63 63 65

3 22 17 21 21 23 23 25 32
1 81 86 82 82 81 81 78 73
2 42 40 43 43 47 41 46 52
4 64 66 64 64 60 65 61 56
5 20 23 23 23 25 24 27 27
5 67 62 62 62 58 60 55 55
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ig. 4. kNN classification for heparin-contaminant data over the range k = 1 to k = 2
PCs = 20); (d) Heparin vs DS vs OSCS (PCs = 20).

odel was achieved for the Heparin vs DS, Heparin vs OSCS, Heparin
s [DS + OSCS], and Heparin vs DS vs OSCS models using 15–25 PCs
epending on the specific model.

The misclassification rates for nearest neighbors k from 1 to 25
re plotted in Fig. 4. The black dots and the vertical bars represent
he means as well as mean ± 1 standard error for the misclassifica-
ion rates using LOO-CV [21]. The smallest LOO-CV error is depicted
y a dotted horizontal line corresponding to the position of the
ean plus one standard error. For the training sets, the misclassi-

cation rate was always zero for k = 1 and increased with larger k
alues for all four models. The test sets showed a similar pattern,
.e., the misclassification rates varied within a tight range, except
he Heparin vs OSCS model for which the rates rose for k > 4. The
ptimal k values of 2, 4, 3 and 3 respectively were for the Heparin
s DS, Heparin vs OSCS, Heparin vs [DS + OSCS], and Heparin vs DS vs
SCS models.

When the predictive ability was evaluated for the external test
et based on the above analysis for different numbers of PCs and a
eries of k values, the optimal success rates were 78%, 93%, 83%
nd 75% for the four models as shown in Table 5. The classifi-
ation performance was inferior for kNN compared with PLS-DS

nd LDA. For the Heparin vs DS model, one heparin sample was
isclassified as DS but nine out of the seventeen DS test samples
ere misclassified as Heparin. Unlike PLS-DA and LDA, kNN was
nable to completely discriminate Heparin and OSCS. For the Hep-
rin vs [DS + OSCS] model, three Heparin samples were misclassified
Heparin vs DS (PCs = 25); (b) Heparin vs OSCS (PCs = 15); (c) Heparin vs [DS + OSCS]

as [DS + OSCS] while six DS samples and one OSCS sample were mis-
classified as Heparin. Likewise for the threefold Heparin vs DS vs
OSCS model, kNN produced a total of fifteen misclassifications.

4. Conclusions

In the present study, we applied multivariate chemometric
approaches in combination with 1H NMR spectroscopy for qualita-
tive and quantitative analysis of heparin samples that may possess
dermatan sulfate (DS) impurities, oversulfated chondroitin sulfate
(OSCS) contaminants, or both. We show that these chemomet-
ric methods (PCA, PLS-DA, LDA or kNN) are useful tools for the
exploration and visualization of heparin NMR spectral data, and
for the generation of classification models with outstanding perfor-
mance attributes. The large number of original variables (74) was
reduced by chemometric methods into a much smaller number of
new variables (PCs, or latent variables) for effective clustering and
classification. The degree of success of the classification models in
discriminating the samples of pure heparin (Heparin) from those
containing the impurity DS (DS) and the contaminant OSCS (OSCS)
depended on the specific chemometric procedures for choosing the

appropriate variables.

The well-known unsupervised chemometric method of PCA was
used to explore the similarities and differences in the complex pat-
tern of overlapping 1H NMR signals found in the heparin spectra.
The PCA results showed that the samples were separated into two
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istinct clusters for the Heparin vs OSCS groups, but the distinction
etween Heparin and DS was less evident. Excellent discrimination
f the Heparin samples from those samples containing impurities
DS) and contaminants (OSCS) was achieved with the supervised

ethod PLS-DA.
The predictive performance of the models obtained from PLS-

A and LDA were outstanding in differentiating Heparin from DS
nd OSCS with very few misclassifications. In all cases, better clas-
ification rates (fewer misclassifications) were attained for Heparin
s OSCS models than for Heparin vs DS models regardless of the
lustering and classification approach. Under optimal conditions,
uccess rates of 100% were frequently achieved for discrimination
etween Heparin and OSCS samples. This outcome is plausible, in
iew of the much closer similarity in the 1H NMR spectral patterns
etween Heparin and DS than between Heparin and OSCS. The LDA
pproach outperformed PLS-DA (89% vs 84%) for discrimination of
he Heparin and DS samples.

In summary, the present study reveals that 1H NMR spec-
roscopy, in combination with multivariate chemometric methods
uch as PLS-DA and LDA, represent an effective strategy for fast and
eliable identification of impurities (DS) and contaminants (OSCS)
n heparin API samples. The pattern recognition approach applied
ere may be useful in monitoring purity of other complex naturally
erived compounds.
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